Tianyu Kong

Research Interests

Mathematical modeling, numerical analysis, partial differential equations, multiple-scale analysis, mathematical physics, quantum physics, and optimization

Education

University of Minnesota Twin Cities, Minneapolis, MN

09.2021 - 2026

(Expected)

PhD in Applied Mathematics

o Advisor: Mitchell Luskin, Alexander B. Watson

o GPA: 3.96/4.00

University of Chicago, Chicago, IL

09.2017 - 06.2021

Honors BS in Applied Mathematics & Physics

o GPA: 3.73/4.00

Honors and Scholarships

SIAM Student Travel Award	09.2025
Great Lakes SIAM Travel Award	08.2025
UMN Doctoral Dissertation Fellowship	05.2024
SIAM Student Travel Award	03.2024
UMN Vanky Men Memorial Fellowship	12.2023
UChicago Dean's List	07.2018, 07.2019

Publications

1. Higher-order continuum models for twisted bilayer graphene

Solomon Quinn, **Tianyu Kong**, Mitchell Luskin, Alexander B. Watson *Journal of Mathematical Physics 66.10 (2025)*

2. Interacting twisted bilayer graphene with systematic modeling of structural relaxation

Tianyu Kong, Alexander B. Watson, Mitchell Luskin, Kevin D. Stubbs

Electronic Structure. 035001 (2025).

3. Modeling of electronic dynamics in twisted bilayer graphene

Tianyu Kong, Diyi Liu, Mitchell Luskin, Alexander B. Watson

SIAM Journal on Applied Mathematics. 84, 1011 (2024).

4. Bistritzer-MacDonald dynamics in twisted bilayer graphene

Alexander B. Watson, Tianyu Kong, Allan H. MacDonald, Mitchell Luskin

Journal of Mathematical Physics 64.3 (2023). Editor's Choice

Research Experience

Graduate Research Assistant, UMN

06.2021 - Present

Advisor: Mitchell Luskin and Alexander B. Watson

- Developed and analyzed mathematical models for incommensurate 2D materials, focusing on the electronic properties of twisted bilayer graphene with mechanical effects
- Used multiple-scale analysis to identify a regime where the discrete aperiodic model can be reduced to a periodic continuum model

- o Derived a domain truncation scheme to approximate the electron dynamics in an infinite system
- Validated analytical models by implementing numerical simulations in Python, confirming theoretical predictions of electron dynamics

${\bf Student\ Assistant}, \ {\bf Lawrence\ Berkeley\ National\ Laboratory}$

05.2024 - 08.2024

Advisor: Chao Yang and Lin Lin

05.2023 - 08.2023

- Studied exotic quantum phases in magic angle twisted bilayer graphene using interacting models that accounts for electron-electron correlation
- Implemented Hartree-Fock (HF) and Coupled Clusters (CC) methods with Python-based Simulation of Chemistry Framework (PySCF)
- Developed an accurate continuum model to compute the electron dispersion with uniform strain and structural relaxation, and computed Coulomb interaction between electrons in deformed materials

${\bf Undergraduate\ Research\ Assistant},\ {\bf UChicago}$

04.2020 - 05.2021

Advisor: Mary Silber

- Studied different types of Minimum Action Methods to determine the transition of states in a dynamical system subject to random perturbation
- Implemented MATLAB code and used steepest descent and quasi-Newton methods to calculate the Minimum Action Path in Lorenz systems

Teaching Experience

Teaching assistant, School of Mathematics, UMN

09.2021 - 05.2024

Honors Calculus

Calculus for College of Science and Engineering

- Held 2 workshop sessions per week for 3 hours total, lectured and organized group discussions on challenging concepts and problems, and responded to students' questions in an engaging manner.
- Graded weekly homework, quizzes and final exams promptly, and provided detailed feedback.

Grader, School of Mathematics, UMN

09.2022 - 05.2024

Mathematical Modeling and Applied Mathematics

Functional Analysis

Grader, Department of Mathematics, UChicago

09.2018 - 05.2020

 $Mathematical\ Methods\ for\ Physical\ Sciences$

Honors Calculus

 \circ Promptly graded weekly homework and exams for \sim 30 students.

Talks and Seminar Presentations

Continuum Model for Relaxed Moire Bilayer Graphene [upcoming] SIAM Conference on Analysis of Partial Differential Equations, Pittsburgh, PA	11.2025
Multiscale Modeling of Electron Dynamics in Twisted Bilayer Graphene University of Minnesota Duluth Math Colloquium, Duluth MN	10.2025
Multi-scale Modeling of Electron Dynamics in Twisted Bilayer Graphene UMN Seminar of Mathematical Applications & Computations, Minneapolis MN	10.2025
Multiscale Modeling in Twisted Bilayer Graphene with Strain and Relaxation SIAM Great Lakes Section Annual Meeting, Chicago IL	09.2025
"Magic" in Moiré Materials – An Applied Mathematics Perspective UMN Seminar of Mathematical Applications & Computations, Minneapolis MN	03.2025
Modeling of Electronic Dynamics in Twisted Bilayer Graphene International workshop on 2D and moiré materials, Roscoff France	07.2024

Modeling of Electronic Dynamics in Twisted Bilayer Graphene SIAM Conference on Materials Science, Pittsburgh, PA	05.2024
Modeling of Electronic Dynamics in Twisted Bilayer Graphene Brin Mathematics Research Center Workshop, College Park, MD	03.2024
Poster Presentations	
Interacting Twisted Bilayer Graphene with Systematic Modeling of Structural Relaxation	05.2025
Simons Foundation Moiré Materials Magic Workshop, New York, NY	
A Comparison of Minimum Action Methods for Computing Noise-induced Transitions of the Lorenz System	05.2021
SIAM Conference on Applications of Dynamical Systems (DS21), Remote	
Professional Affiliations	
Webmaster, SIAM student chapter, UMN	09.2024 - Present
\circ Managed the website and official documents for the SIAM student chapter at UMN	
\circ Co-organized the annual student Integration Bee contest	
Technologies	

Python, MATLAB, Julia, R, MySQL